Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
tp-audio-ee-etudiant-m24duboc
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
UEEE
sar-signal-audio
gr-vhdl-m24duboc
tp-audio-ee-etudiant-m24duboc
Commits
e1af76be
Commit
e1af76be
authored
1 month ago
by
DUBOC Marc
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
f03d9ab9
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
PARTIE3.m
+189
-0
189 additions, 0 deletions
PARTIE3.m
with
189 additions
and
0 deletions
PARTIE3.m
0 → 100644
+
189
−
0
View file @
e1af76be
%% ========================================================================
% PARTIE 3 — Effets audio numeriques (Q 3.1 → Q 3.19)
% Poly « SAR – Traitements audio : partie signal » v1.0 (23 avril 2025)
% ------------------------------------------------------------------------
clear
;
close
all
;
clc
Fe
=
44100
;
% frequence d echantillonnage
%% ========================================================================
%% Q 3.1 — Correlation croisee R yx = R xx * h
% -------------------------------------------------------------------------
dur
=
0.05
;
f0
=
1000
;
t
=
(
0
:
1
/
Fe
:
dur
-
1
/
Fe
)
.'
;
x
=
sin
(
2
*
pi
*
f0
*
t
)
+
0.5
*
randn
(
size
(
t
));
% excitation
h
=
[
1
zeros
(
1
,
199
)
0.5
];
% reponse impulsionnelle test
y
=
conv
(
x
,
h
,
'same'
);
lagMax
=
400
;
Rxx
=
xcorr
(
x
,
lagMax
,
'biased'
);
Ryx
=
xcorr
(
y
,
x
,
lagMax
,
'biased'
);
% variable corrigee
convTest
=
conv
(
Rxx
,
h
,
'same'
);
% theorie
figure
(
'Name'
,
'Q3-1 Correlations'
);
hold
on
plot
(
-
lagMax
:
lagMax
,
Ryx
,
'b'
,
'DisplayName'
,
'R yx numerique'
);
plot
(
-
lagMax
:
lagMax
,
convTest
,
'r--'
,
'DisplayName'
,
'R xx * h'
);
grid
on
;
legend
;
xlabel
(
'retard (ech)'
);
title
(
'Q 3.1 Verification corrélation'
);
%% ========================================================================
%% Q 3.2 — Estimation de h si R xx ≈ Dirac
% -------------------------------------------------------------------------
hEstime
=
Ryx
(
lagMax
+
1
:
end
);
% partie causale
figure
(
'Name'
,
'Q3-2 h estimee'
);
stem
(
hEstime
(
1
:
300
));
grid
on
title
(
'Q 3.2 Estimation h'
);
%% ========================================================================
%% Q 3.3 — Choix du meilleur signal d excitation
% -------------------------------------------------------------------------
if
exist
(
'signalExcitation.mat'
,
'file'
)
load
signalExcitation
.
mat
% attend variables xe1, xe2
lag
=
1024
;
Rxe1
=
max
(
abs
(
xcorr
(
xe1
,
lag
,
'biased'
)));
Rxe2
=
max
(
abs
(
xcorr
(
xe2
,
lag
,
'biased'
)));
if
Rxe1
>
Rxe2
,
choix
=
'xe1'
;
else
,
choix
=
'xe2'
;
end
fprintf
(
'Q 3.3 Signal retenu : %s\n'
,
choix
);
else
warning
(
'Fichier signalExcitation.mat absent — Q 3.3 ignoree'
);
choix
=
''
;
end
%% ========================================================================
%% Q 3.4 — Simulation de mesure de piece et estimation de h
% -------------------------------------------------------------------------
if
exist
(
'simulePiece'
,
'file'
)
&&
~
isempty
(
choix
)
[
tensionMicro
,
excitation
]
=
simulePiece
(
choix
);
lag
=
4000
;
hPiece
=
xcorr
(
tensionMicro
,
excitation
,
lag
,
'biased'
);
hPiece
=
hPiece
(
lag
+
1
:
end
);
figure
(
'Name'
,
'Q3-4 h piece'
);
plot
(
hPiece
);
grid
on
;
title
(
'Q 3.4 h mesuree'
);
else
warning
(
'Fonction simulePiece absente ou signal non choisi — Q 3.4 ignoree'
);
hPiece
=
h
;
% secours : reponse test
excitation
=
x
;
% secours : signal test
end
%% ========================================================================
%% Q 3.5 — Fonction effectReverb (convolution directe)
% -------------------------------------------------------------------------
yReverb
=
effectReverb
(
excitation
,
hPiece
);
%#ok<NASGU>
%% ========================================================================
%% Q 3.6 — Temps de calcul de effectReverb
tic
effectReverb
(
excitation
,
hPiece
);
tempsDirect
=
toc
;
fprintf
(
'Q 3.6 Convolution temporelle : %.3f s\n'
,
tempsDirect
);
%% ========================================================================
%% Q 3.7 — Fonction effectReverbFFT + temps
tic
yReverbFFT
=
effectReverbFFT
(
excitation
,
hPiece
);
tempsFFT
=
toc
;
fprintf
(
'Q 3.7 Convolution FFT : %.3f s\n'
,
tempsFFT
);
%% ========================================================================
%% Q 3.8 — Equivalence numerique des deux convolutions
delta
=
yReverbFFT
(
1
:
length
(
excitation
))
-
yReverb
(
1
:
length
(
excitation
));
fprintf
(
'Q 3.8 Energie difference : %.4e\n'
,
norm
(
delta
));
%% ========================================================================
%% Q 3.9 – Q 3.14 — Delay a boucle simple
% -------------------------------------------------------------------------
g
=
0.9
;
tauSec
=
0.25
;
tauEch
=
round
(
tauSec
*
Fe
);
Nimp
=
8
;
% nombre d echos
hDelayTheo
=
impulseDelay
(
g
,
tauEch
,
Nimp
);
[
bDelay
,
aDelay
]
=
coeffDelay
(
g
,
tauEch
);
deltaSig
=
[
1
zeros
(
1
,
Nimp
*
tauEch
)];
hDelayNum
=
filter
(
bDelay
,
aDelay
,
deltaSig
);
% Q 3.12 : affichage des impulsions
figure
(
'Name'
,
'Q3-12 h delay'
);
hold
on
stem
(
hDelayNum
,
'b'
);
stem
(
hDelayTheo
,
'r.'
);
legend
(
'numerique'
,
'theorique'
);
title
(
'Impulsion delay'
);
% Q 3.13 / 3.14 : module theorique vs DFT
Nfft
=
4096
;
w
=
linspace
(
0
,
pi
,
Nfft
);
Hth
=
1
.
/
(
1
+
g
*
exp
(
-
1
j
*
w
*
tauEch
));
Hnum
=
fft
(
hDelayNum
,
Nfft
);
figure
(
'Name'
,
'Q3-14 Module'
);
hold
on
plot
(
w
/
pi
*
Fe
/
2
,
20
*
log10
(
abs
(
Hth
)),
'r'
,
'DisplayName'
,
'theorie'
);
plot
(
w
/
pi
*
Fe
/
2
,
20
*
log10
(
abs
(
Hnum
(
1
:
Nfft
))),
'b--'
,
'DisplayName'
,
'DFT'
);
legend
;
grid
on
;
xlabel
(
'f (Hz)'
);
ylabel
(
'dB'
);
title
(
'Module theorique vs numerique'
);
%% ========================================================================
%% Q 3.15 — Fonction effectDelay + test
testDur
=
2
;
t
=
(
0
:
1
/
Fe
:
testDur
-
1
/
Fe
)
.'
;
testSig
=
sin
(
2
*
pi
*
440
*
t
);
yDelay
=
effectDelay
(
testSig
,
tauSec
,
g
,
Fe
);
soundsc
(
yDelay
,
Fe
);
pause
(
testDur
+
0.5
);
%% ========================================================================
%% Q 3.17 – Q 3.18 — Delay boucle + filtre moyenne K
K
=
10
;
yDelayFilt
=
effectDelayFiltre
(
testSig
,
tauSec
,
g
,
K
,
Fe
);
audiowrite
(
'pianoDelayFiltre.wav'
,
yDelayFilt
,
Fe
);
soundsc
(
yDelayFilt
,
Fe
);
disp
(
'Q 3.18 Fichier pianoDelayFiltre.wav genere'
);
%% ========================================================================
%% Q 3.19 — Attenuation des hautes frequences (boucle filtree)
w
=
linspace
(
0
,
pi
,
2048
);
Hf
=
(
1
-
g
*
exp
(
-
1
j
*
w
*
tauEch
))
.^
(
-
1
)
.*
(
sin
(
K
*
w
/
2
)
.
/(
K
*
sin
(
w
/
2
)));
figure
(
'Name'
,
'Q3-19 Attenuation HF'
);
plot
(
w
/
pi
*
Fe
/
2
,
20
*
log10
(
abs
(
Hf
)));
grid
on
xlabel
(
'f (Hz)'
);
ylabel
(
'dB'
);
title
(
'Boucle avec moyenne glissante — aigus attenues'
);
%% ========================================================================
%% === Fonctions locales (sans underscore) ================================
function
y
=
effectReverb
(
x
,
h
)
y
=
filter
(
h
,
1
,
x
);
% convolution lineaire directe
end
function
y
=
effectReverbFFT
(
x
,
h
)
L
=
2
^
nextpow2
(
length
(
x
)
+
length
(
h
)
-
1
);
y
=
real
(
ifft
(
fft
(
x
,
L
)
.*
fft
(
h
,
L
)
));
y
=
y
(
1
:
length
(
x
));
end
function
h
=
impulseDelay
(
g
,
tauEch
,
Nmax
)
n
=
0
:
Nmax
;
h
=
zeros
(
1
,
Nmax
*
tauEch
+
1
);
h
(
n
*
tauEch
+
1
)
=
(
-
g
)
.^
n
;
end
function
[
b
,
a
]
=
coeffDelay
(
g
,
tauEch
)
b
=
[
1
zeros
(
1
,
tauEch
)];
% numerateur
a
=
[
1
zeros
(
1
,
tauEch
-
1
)
-
g
];
% denominateur
end
function
y
=
effectDelay
(
x
,
tauSec
,
g
,
Fe
)
tauEch
=
round
(
tauSec
*
Fe
);
[
b
,
a
]
=
coeffDelay
(
g
,
tauEch
);
y
=
filter
(
b
,
a
,
x
);
end
function
y
=
effectDelayFiltre
(
x
,
tauSec
,
g
,
K
,
Fe
)
tauEch
=
round
(
tauSec
*
Fe
);
buf
=
zeros
(
tauEch
,
1
);
y
=
zeros
(
size
(
x
));
coef
=
ones
(
1
,
K
)/
K
;
% moyenne glissante
for
n
=
1
:
length
(
x
)
delayed
=
buf
(
1
);
buf
=
[
buf
(
2
:
end
);
0
];
feedback
=
filter
(
coef
,
1
,
g
*
delayed
);
y
(
n
)
=
x
(
n
)
+
feedback
(
1
);
buf
(
end
)
=
y
(
n
);
end
end
function
plotSpectrum
(
x
,
Fe
,
color
,
label
)
N
=
length
(
x
);
f
=
(
-
N
/
2
:
N
/
2
-
1
)
*
Fe
/
N
;
X
=
fftshift
(
fft
(
x
.*
hann
(
N
)));
SdB
=
20
*
log10
(
abs
(
X
)/
max
(
abs
(
X
))
+
eps
);
plot
(
f
,
SdB
,
color
,
'LineWidth'
,
1.2
,
'DisplayName'
,
label
);
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment